Predicting the secondary structures and tertiary interactions of 211 group I introns in IE subgroup

نویسندگان

  • Zhijie Li
  • Yi Zhang
چکیده

The large number of currently available group I intron sequences in the public databases provides opportunity for studying this large family of structurally complex catalytic RNA by large-scale comparative sequence analysis. In this study, the detailed secondary structures of 211 group I introns in the IE subgroup were manually predicted. The secondary structure-favored alignments showed that IE introns contain 14 conserved stems. The P13 stem formed by long-range base-pairing between P2.1 and P9.1 is conserved among IE introns. Sequence variations in the conserved core divide IE introns into three distinct minor subgroups, namely IE1, IE2 and IE3. Co-variation of the peripheral structural motifs with core sequences supports that the peripheral elements function in assisting the core structure folding. Interestingly, host-specific structural motifs were found in IE2 introns inserted at S516 position. Competitive base-pairing is found to be conserved at the junctions of all long-range paired regions, suggesting a possible mechanism of establishing long-range base-pairing during large RNA folding. These findings extend our knowledge of IE introns, indicating that comparative analysis can be a very good complement for deepening our understanding of RNA structure and function in the genomic era.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A peripheral element assembles the compact core structure essential for group I intron self-splicing

The presence of non-conserved peripheral elements in all naturally occurring group I introns underline their importance in ensuring the natural intron function. Recently, we reported that some peripheral elements are conserved in group I introns of IE subgroup. Using self-splicing activity as a readout, our initial screening revealed that one such conserved peripheral elements, P2.1, is mainly ...

متن کامل

Predicting RNA Structure by Multiple Template Homology Modeling

Despite the importance of 3D structure to understand the myriad functions of RNAs in cells, most RNA molecules remain out of reach of crystallographic and NMR methods. However, certain structural information such as base pairing and some tertiary contacts can be determined readily for many RNAs by bioinformatics or relatively low cost experiments. Further, because RNA structure is highly modula...

متن کامل

Protein-induced folding of a group I intron in cytochrome b pre-mRNA.

Some group I introns have been shown to be self-splicing in vitro, but perhaps all require proteins for splicing in vivo. Sequence differences affect the stability of secondary structures and may explain why some group I introns function efficiently without protein cofactors while others require them. The terminal intron of the cytochrome b pre-mRNA from yeast mitochondria needs a nucleus-encod...

متن کامل

Toward predicting self-splicing and protein-facilitated splicing of group I introns.

In the current era of massive discoveries of noncoding RNAs within genomes, being able to infer a function from a nucleotide sequence is of paramount interest. Although studies of individual group I introns have identified self-splicing and nonself-splicing examples, there is no overall understanding of the prevalence of self-splicing or the factors that determine it among the >2300 group I int...

متن کامل

GISSD: Group I Intron Sequence and Structure Database

Group I Intron Sequence and Structure Database (GISSD) is a specialized and comprehensive database for group I introns, focusing on the integration of useful group I intron information from available databases and providing de novo data that is essential for understanding these introns at a systematic level. This database presents 1789 complete intron records, including the nucleotide sequence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005